Mitochondrial
Protein Degradation and
Immune Response in
Drosophila melanogaster

Fuminori Tanizawa Hur Lab

Mitochondrial **Proteostasis** Aging **Immunity**

Mitochondrial **Proteostasis** Aging **Immunity**

Proteostasis

- Protein Homeostasis (Proteostasis)
 - Protease: enzyme degrading misfolded or damaged proteins

Protease

Mitochondrial Proteostasis

- Maintaining function of mitochondria
- Mitochondrial proteases (eg. ClpXP)

Mitochondrial **Proteostasis** Aging **Immunity**

Mild overexpression of mitochondrial protease ClpXP increases longevity

Mitochondrial Proteostasis

Immunity

Mitochondrial Proteostasis

Immunity

• Tissue damage and metabolic disruption

Aging

Immunity

- Decline in immune function (Immunosenescence)
- Chronic inflammation (Inflammaging)

Aging

Immunity

Mitochondrial Proteostasis

Immunity

Mitochondrial Proteostasis

Immunity

Disruptions in mitochondrial quality control invoke innate immune response

Mitochondrial Proteostasis

Immunity

Methods

Increasing Protein Degradation

- Overexpressing mitochondrial protease ClpXP
 - daGS/UAS-clpXP

Methods

Bacterial Infection Assay

Serratia marcescens

Survivorship Assay %

Antimicrobial Peptide Expression Level

(Gao & Zhu, 2016)

Bacterial Load Assay

Bacterial Infection Assay

Serratia marcescens

Antimicrobial Peptide Expression Level

(Gao & Zhu, 2016)

Bacterial Load Assay

Infection Assay Validation

Infection Assay Validation - Infectious Dose

Infection Assay Validation - Age Difference

Bacterial Infection Assay

Serratia marcescens

Survivorship Assay %

Antimicrobial Peptide Expression Level

Diptericin

(Gao & Zhu, 2016)

Bacterial Load Assay

Results

- Developed Immunological Assays
 - Sensitive to infectious doses
 - Sensitive to age-difference

Results

Bacterial Infection Assay

Serratia marcescens

Antimicrobial Peptide Expression Level

(Gao & Zhu, 2016)

Bacterial Load Assay

ClpXP overexpression did not change Survival rate after infection

Bacterial Infection Assay

Serratia marcescens

Survivorship Assay %

Bacterial Load Assay

ClpXP overexpression did not change Diptericin level after infection

Bacterial Infection Assay

Serratia marcescens

Survivorship Assay %

Antimicrobial Peptide Expression Level

(Gao & Zhu, 2016)

Bacterial Load Assay

ClpXP overexpression did not change bacterial load after infection

Results

- Developed Immunological Assays
 - Sensitive to infectious doses
 - Sensitive to age-difference
- ClpXP overexpression had no significant effect on:
 - Survival after pricking infection
 - Diptericin expression after pricking infection
 - Bacterial load after oral infection

Overexpressing ClpXP did **not** impact immune response

Acknowledgement

- Professor Jae Hur
- Professor Daniel Stoebel
- Professor Stephen Adolph
- Kris Chang & Ethan Lee
- Members of the Hur Lab
- Biology Department,
 Harvey Mudd College

Thank You!

References